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Abstract 
The numerical study of crack propagation is a very complex and important
problem for knowing the lifetime of a structure. Nowadays, the modelling of crack 
propagation by various numerical methods plays a beneficial part in solving 
problems in fracture mechanics. Significantly used in biomechanics, biomaterials
and structural calculation, it also makes it possible to deal with certain problems of 
fatigue of materials. In this article, a numerical study based on the finite element
method (FEM) was used for a two-dimensional model, of an elastoplastic material, 
containing a central crack. The article is also based on the study of different
cracking factors, such as stress intensity factors KI and KII, J-integral and strain 
energy. On the other hand, the contrast of these parameters was precisely centred
on the five contours of the crack front. In addition, Abaqus computer code was
used to obtain different results, moreover, CPS4R elements were used for
modelling. 

 
1. Introduction 

The numerical study is a theory widely used by 
engineers that allows the representation of one of 
the important physical phenomena in fatigue crack 
propagation. Originally, numerical studies were 
developed for isotropic homogeneous materials. 
However, it is commonly used to characterise the 
different singularity parameters based on the 
evolution of the stress intensity factors in different 
modes, the contour integral (J-integral) and the 
strain energy. On the other hand, Laribou and 
Qotni [1] have examined and verified the analytical 
calculations of the stress intensity factor (SIF) 
through an empirical approach of the form factor in 
mode I, by the finite element method with the 
software Abaqus in the linear elastic domain for 
two different cracks. The first has a circular section 
shape, and the second has an elliptical section 
shape, and both shapes contain a central crack 
under a uniform tensile load. El Fakkoussi et al. [2] 
calculated the stress intensity factor KI, in mode I, 

by the finite element method (FEM) and the 
extended finite element method (XFEM) in the 
linear elastic domain, of a longitudinal semi-
elliptical crack of a tube. Yu and Kuna [3] presented 
the interaction integral (I-integral) method to 
extract the individual stress intensity factor (SIF) 
and stress T of a crack in single materials or at a bi-
material interface. On the other hand, Lal et al. [4] 
presented a study based on the effect of the length 
and crack angle on the mixed-mode stress intensity 
factor (MSIF) of a functionally graded material plate 
cracked at the centre under biaxial stress. Khatri 
and Lal [5] presented the stochastic fracture 
analysis of an isotropic plate with a hole and 
emanating crack under biaxial loadings by the 
XFEM method. In addition, de Araújo et al. [6] 
presented an adaptive methodology for the finite 
element analysis of an elastoplastic material with a 
two-dimensional cracked structure. Alshoaibi and 
Fageehi [7] proposed a study based on the 
formulation of the finite element method, to 
analyse the problems of fatigue crack propagation, 
according to the linear elastic fracture mechanics 
(LEFM) theory. Goud et al. [8] showed the variation 
of the stress concentration factor for different 
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geometries of a crack in a thin plate. Deng et al. [9] 
proposed a numerical analysis of crack propagation 
on a sample under stress, and the Paris law was 
used to predict fatigue life. On the other hand, a 
new method stretching finite element method 
(SFEM) has been used by Bentahar et al. [10] and 
Bentahar and Benzaama [11] to characterise the 
stress intensity factors of an initial crack. 

This article contributes to the knowledge of the 
properties of the central crack of an elastoplastic 
material, by studying and diagnosing the crack tip 
zone. 
 
2. Numerical modelling 

The stress intensity factor KI is an essential 
parameter in fracture mechanics, which allows us 
to know the state of stress and strain at any crack 
point Saverio [12]. According to Ewalds and Wanhill 
[13] the stress intensity factor is given by the 
following relationship: 

 I = F πK σ a , (1) 

where σ is the applied stress, a is the crack length 
and F is the geometric correction factor of the used 
model: 
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where w is the length of the plate. 
The stress intensity factor KII is calculated by the 

relation: 

 I IIsin + (3cos – 1) = 0K Kθ θ , (3) 

where θ is the kinking angle during crack 
propagation. 
 
2.1 Maximum circumferential stress criterion 

(MCSC) 

The maximum circumferential stress criterion 
(MCSC) was introduced by Erdogan and Sih [14] for 
elastic materials. It specifies that the crack 
propagates in the direction for which the 
circumferential constraint is maximum: 
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where KI and KII are the stress intensity factors 
corresponding to cracking mode I and II, respectively. 

2.2 Different cracking modes 

The presence of defects may be in the form of 
internal cracks or surface cracks. Fracture 
mechanics analysis correlates parameters from 
loading, geometry and material. Then, it predicts 
the conditions under which a crack can propagate 
and possibly lead to the complete failure of the 
structure.  

In the continuous medium, cracking is an 
irreversible separation phenomenon. Three main 
modes of cracking can be distinguished (Fig. 1). 

• aperture mode (mode I), 
• shear mode (mode II) and 
• anti-plane shear mode (mode III). 

 
Figure 1. Illustration of fracture cracking modes 

 
2.3 Stress fields and modelling elements 

Tada et al. [15] gave the general 2D stress field 
equation near the crack front, to define the stress 
intensity factor. The CPS4R elements were used 
around the crack front. Further, Shi et al. [16] 
proposed a plastic history field to perform the 
energy decomposition at the crack front. Figure 2 
shows the stress field near a crack point. 

 
Figure 2. The stress state at the level crack front 

The stress field in 2D near the crack front defied 
by the stress intensity factor is given by Equation 
(5) [15]: 

  I, II I, II
, ( , ) = ( )

2π
iji j

K
σ r f

r
θ θ , (5) 

where is the stress field associated with 
mode I and K I, II is SIF in modes I and II. 

In addition, Equation (6) illustrates the 
constraints on the two axes (x and y). 
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2.4 J-integral 

Several fracture mechanics authors have made 
it possible to model the problem of crack 
propagation in depth and have developed 
calculation methods. Among these authors Rice 
[17] and Bui [18] with contour J-integral, and 
Nguyen [19] and Destuynder [20] by introducing an 
arbitrary field in the formulation of the integral 
they have approached. Figure 3 illustrates the five 
contours of the crack tip. 

 
Figure 3. Definition of the contours for the evaluation 

of the J-integral 
 
3. Material properties and studied model 

Table 1 presents the mechanical and physical 
properties of the elastoplastic material (aluminium 
alloy), for which the plastic properties vary 
between 80 and 120 MPa for points 1 and 2 (Fig. 4). 

Table 1. Mechanical and physical properties of the 
material 

Plastic Elastic 

 Yield 
stress, 
MPa 

Plastic 
strain, 

% 

Modulus of 
elasticity, 

GPa 

Poisson's 
ratio 

Density, 
kg/m3 

1 80 0 
2 120 0.3 

70 0.33 7872 

 
The studied plate is a structure of the rectangular 

form, with dimensions (R × L) 10 × 20 mm, made 
up of an elastoplastic material whose mechanical 
properties are presented in Table 1. The centred 
crack length is 2a = 2 mm, and the boundary 
conditions are shown in Figure 4. The embedding is 
applied to surface 1, and the tensile stress has 

been applied to surface 2. The mesh is made up of 
the CPS4R elements as shown in Figure 5. 

 
Figure 4. Studied model: (a) dimensions and 

(b) boundary conditions 

 
Figure 5. FEM model with the construction mesh 

 
4. Results and discussion 

The results part is mainly based on the study of 
different characterisation parameters, such as the 
stress intensity factors KI and KII, the J-integral and 
the stress energy. 

Figure 6. shows the variation of the stress 
intensity factor KI as a function of time concerning 
the model which is studied. The study is based on 
the state of variation of KI at the level of the crack 
front of the zone of singularity. The state of the 
stress intensity factor KI variation is compared 
between the different contours. Thus, the 
optimisation of the time interval t is confined 
between 0.25 ≤ t ≤ 0.69 s. This comparison shows a 
good proportionality between the five contours, 
concerning the results obtained. 

Figure 7 shows the variation of KII as a function 
of time. It can be said that the results obtained 
from the stress intensity factor KII concerning the 
different contours are proportional to each other. 

(a) (b) 
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In addition, we can notice that the results are 
satisfactory, notably in the last three contours. This 
comparison is made in the case of t = 0.25, 0.3, 0.4, 
0.5, 0.6 and 0.69 s. Indeed, the more the time 
increases, the more the KII decreases. 

 
Figure 6. Variation of stress intensity factor KI 

 
Figure 7. Variation of stress intensity factor KII 

Figure 8 shows the variation of J-integral in the 
different periods, i.e. from t = 0.25 s up to t = 0.69 s, 
by the FEM method. Note that crack propagation 
causes an increase in the J-integral. Indeed, from 
this figure, we can notice that the values of J-
integral are almost constant up to t = 0.45 s. 

Figure 9 presents the variation of strain energy 
as a function of time. It can be seen that values 
obtained for the strain energy in the time interval 
from t = 0.25 s to t = 0.69 s are proportional to 
each other. 

The strain energy remains stable until t = 0.3 s 
after which the strain energy starts to increase for 
the contours 1 and 2, while for the other contours, 
the energy remains slightly constant. However, 
after the value of t = 0.4 s, the strain energy 

increases rapidly for all contours. The strain energy 
for the first two contours varies in the interval from 
0 to 35 J, for the time interval from 0.25 to 0.69 s. 
The study of the energy at the level of the crack 
front has been done by Bentahar et al. [21] in the 
case of the strain energy, by the XFEM method; by 
Bentahar [22] in the case of the analysis of the 
energy dissipation; and by Bentahar [23] in the case 
of fatigue analysis of an inclined crack propagation. 

 
Figure 8. Variation of J-integral 

 
Figure 9. Variation of strain energy 

 
5. Conclusion 

The object of this study was the analysis of the 
propagation of centred crack on a structure of an 
elastoplastic material. In addition, linear fracture 
mechanics tools were used, such as the crack 
propagation criterion, the stress state at the crack 
front and the mesh. 

The variation of the different crack parameters 
was studied, such as the stress intensity factors KI 
and KII, the contour J-integral and the strain 
energy. 



M. Bentahar | Tribology and Materials 3 (2023) 108-113 

 112

The finite element method (FEM) was chosen 
for the simulation. The different parameters have 
been studied as a function of time in the interval 
from 0.25 up to 0.69 s. All the obtained results are 
proportional with respect to the different contours 
of the crack front. 

The optimisation of the time interval is confined 
between 0.25 and 0.69 s. The more the time 
increases, the more the KII decreases. It can be 
seen that the values obtained for the strain energy 
are proportional to each other. The J-integral 
variance has a nearly constant value up to 0.45 s. 
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