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Abstract 
This paper presents simulation results obtained by a set of modern algorithms
adhering to swarm intelligence for minimising wear rate in the case of 
A356/Al2O3 nanocomposites produced using a compocasting process. Grey wolf
optimisation (GWO) algorithm, moth-flame optimisation (MFO) algorithm, 
dragonfly algorithm (DA) and whale optimisation algorithm (WOA) were the
algorithms under examination. A full quadratic regression equation that 
predicts wear rate, as the optimisation objective by considering reinforcement
content, sliding speed, normal load and reinforcement size as the independent
process parameters, was utilised as the objective function. Simulation results 
obtained by the selected algorithms were quite promising in terms of fast
convergence and global optimum result arrival, thus prompting to further
investigation of applying swarm intelligence to general problem-solving aspects 
related to tribology. 

 
1. Introduction 

 
Metal matrix composites (MMCs) have been 

investigated over the years owing to their physical, 
mechanical and tribological properties compared 
to other engineering materials. Metallic materials 
like magnesium, zinc and aluminium are some of 
the materials applied to composites owing to their 
low density, lightweight, superior performance (i.e. 
hardness, strength and stiffness) and outstanding 
behaviour in real-world applications. Based on this 
concept, research has shown that significant 
improvements can be obtained referring to matrix 
materials when adding a relatively small amount of 
several elements as reinforcement [1-3]. 
Nevertheless, MMCs reinforced with ceramics 
have a major drawback; that of poor ductility. This 
shortcoming of MMCs is related to low yield that 
restricts their plastic deformation. Poor ductility is 
a result of hard yet brittle ceramic reinforcement 

phases and the undesired formation of micron-size 
reinforcements as these materials are processed. 
To compensate this drawback, inclusions of light 
metal matrix nanocomposites (MMnCs) have been 
tested by several researchers under varying 
amounts and sizes to reach the desired outcome 
and maintain adequate ductility [4-8]. 

Sekar et al. [9] examined the mechanical and 
tribological properties of A356 alloy reinforced 
with Al2O3 nanoparticles and MoS2 microparticles. 
The authors maintained the percentage of Al2O3 at 
1 wt. % whilst MoS2 varied from 0.5 to 2 wt. % with 
an interval of 0.5 %. After conducting a series of 
tribological experiments they concluded that 
hybrid MMC containing 0.5 and 1 wt. % of MoS2 
and Al2O3 (1 wt. %) exhibited the highest flexural 
strength, reduced wear and friction coefficient. Li 
et al. [10] investigated the effect of in-situ γ-Al2O3 
particles and heat treatment on the microstructure 
and mechanical properties of A356 alloy. Xu et al. 
[11] managed to fabricate the nanometer in-situ γ-
Al2O3 particles reinforced aluminium matrix 
composites by the A356 aluminium alloy and Co3O4 
powder at 850 °C using in-situ reaction in the high-
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temperature melt. Thereby the authors studied in 
detail the effects of γ-Al2O3 particles and cobalt 
element on the microstructure and properties of 
the composites. Several other contributions have 
adopted similar concepts towards the 
characterisation and reinforcement of MMCs and 
MMnCs using various reinforcement particles 
under aluminium matrices and different 
fabrication methods [12-17]. 

Experiments related to tribology are established 
by determining the settings for their process 
parameters as they occur in any engineering 
problem. Therefore, specifying the settings for 
parameters involved by means of intelligent 
optimisation methodologies constitutes a vital 
activity for reducing experimental costs and time-
consuming operational efforts [18-20]. To this 
concept, several intelligent systems have been 
implemented to optimise tribological aspects. 
König et al. [21] monitored and classified the multi-
variant wear behaviour of sliding bearings. They 
implemented acoustic emission (AE) to a test rig 
for sliding bearings. Signals obtained were 
evaluated with machine learning methods in order 
to detect anomalies from a hydrodynamic bearing 
operation. Thereby, a deep learning approach 
based on convolutional neural networks was 
adopted for multi-class classification into three 
different wear failure modes. Cavaleri et al. [22] 
implemented an artificial neural network (ANN) to 
predict the tribological performance of three 
highly alloyed tool steel grades. Their experiments 
involved plane-contact sliding tests under 
unlubricated conditions on a pin-on-disk 
tribometer. Wear maps generated via ANN 
modelling were quite promising in terms of the 
presentation of wear-related information as 
regards the determination of areas under steady-
state wear. Sardar et al. [23] implemented an 
artificial neural network (ANN) and a genetic 
algorithm (GA), which were integrated to model 
tribological characteristics of stir-cast Al-Zn-Mg-Cu 
matrix composites under two-body abrasion 
considering large numbers of experimentally 
generated results. Tribological responses of wear 
rate, coefficient of friction and abraded surface 
roughness were assessed under a wide range of 
input parameters. Shabani et al. [24] conducted 
factor optimisation during the semi-solid 
processing of the nanocomposite with the A360 
aluminium alloy matrix and TiC nanoparticles. An 
adaptive neuro-fuzzy inference system was applied 
to compute the problem's objective function which 

was finally minimised through the application of 
particle swarm optimisation (PSO) algorithm. 

This paper investigates the performance of four 
modern swarm intelligence algorithms in 
minimising the mathematical relationship among 
the independent variables of normal load (N), 
sliding speed (m/s), reinforcement content (wt. %) 
and reinforcement size (nm) and the optimisation 
objective of wear rate (mm3/m) in the case of 
A356/Al2O3 nanocomposites fabricated using the 
compocasting method. The four algorithms 
selected were the grey wolf optimisation (GWO) 
algorithm, moth-flame optimisation (MFO) 
algorithm, dragonfly algorithm (DA) and whale 
optimisation algorithm (WOA). As a fitness 
function for the antagonising algorithms tested, a 
full quadratic regression model previously 
developed [18] was selected. Competitiveness 
among these algorithms was based on indications 
such as minimum result, convergence rate and 
quality of convergence curve. The major scope is to 
implement the selected algorithms to optimisation 
problems related to tribology and assess their 
operational behaviour as well as their quality in 
optimisation performance. The algorithms are 
tested for the first time in the broader literature of 
tribology. 
 
2. Design of experiments and objective 

function definition 

To conduct the optimisation simulations for 
minimising wear in the case of A356/Al2O3 
nanocomposites, the full quadratic regression 
equation presented in [18] was applied. Block-on-
disk contact geometry was used with three 
different Al2O3 contents, namely 0.2, 0.3 and 0.5 
wt. %. The sliding distance was set equal to 1000 m 
whereas the determined sliding speeds were 0.5 
and 1.0 m/s. The experimental values for applied 
normal loads were 40 and 100 N. These levels for 
block-on-disk process parameters were assigned to 
a response surface experiment (RSM) to determine 
the number of experimental runs. Table 1 presents 
the experimental design and the results obtained; 
wear rate WR (mm3/m) is the key objective whilst 
normal load NL (N), sliding speed SS (m/s), 
reinforcement content RC (wt. %) and 
reinforcement size RS (nm) were considered as the 
independent tribological parameters. 

The optimisation problem formulated is 
focused on minimising the wear rate (mm3/m) of 
A356/Al2O3 nanocomposites with respect to the 
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boundaries determined by the original 
experimental design for all independent 
parameters presented in [18]. As an objective 
function for the problem, the full quadratic 
regression equation corresponding to the 
experimental design of Table 1 was considered. 
The regression model was examined for its 
validity and prediction quality through analysis of 
variance (ANOVA) and it was found to have a 
good correlation among experimental and 
predicted results. This was justified by the 
resulting indication for coefficient of 
determination R2 that explains the overall 
variation of wear rate as a response 
(R2 = 95.31 %). The model was also found to 
adhere to normal distribution when examining 
the residuals. 

Table 1. Design of experiments and corresponding 
results for wear rate 

Process parameter Response 
objective 

NL, 
N 

SS, 
m/s 

RC, 
wt. % 

RS, 
nm 

WR × 10–4, 
mm3/m 

40 0.25 0.2 30 1.088 
40 0.25 0.2 100 0.506 
40 0.25 0.3 30 0.970 
40 0.25 0.3 100 0.450 
40 0.25 0.5 30 0.914 
40 0.25 0.5 100 0.345 
40 1.00 0.2 30 0.533 
40 1.00 0.2 100 0.320 
40 1.00 0.3 30 0.228 
40 1.00 0.3 100 0.036 
40 1.00 0.5 30 0.089 
40 1.00 0.5 100 0.003 

100 0.25 0.2 30 3.404 
100 0.25 0.2 100 1.123 
100 0.25 0.3 30 2.530 
100 0.25 0.3 100 0.783 
100 0.25 0.5 30 2.165 
100 0.25 0.5 100 0.689 
100 1.00 0.2 30 0.844 
100 1.00 0.2 100 0.711 
100 1.00 0.3 30 0.623 
100 1.00 0.3 100 0.095 
100 1.00 0.5 30 0.542 
100 1.00 0.5 100 0.013 

3. Wear rate optimisation using swarm 
intelligence algorithms 

Swarm intelligence algorithms mimic the social 
behaviour of natural species and have already 
been implemented in almost every scientific field 
related to engineering, manufacturing and general 
industrial problem-solving applications [25]. 
Noticeable swarm intelligence metaheuristics that 
have been recently developed and applied to 
several areas of engineering science are the grey 
wolf optimisation (GWO) algorithm [26], the moth-
flame optimisation (MFO) algorithm [27], the 
dragonfly algorithm (DA) [28] and the wale 
optimisation algorithm (WOA) [29] among others. 
However, these algorithms are yet to be 
implemented for optimisation problems related to 
tribology. These algorithms exhibit different 
operational behaviour whilst each of them 
simulates the major physical aspects of living 
species considered as search agents. 

In general swarm intelligence algorithms 
present essential benefits when applied to 
optimisation problems from the perspective that 
they manage to maintain information from the 
search domain over iterative evaluations and they 
do it so by handling fewer algorithm-related 
operators when compared to evolutionary 
algorithms. As a result, their implementation is 
facilitated when it comes to practical applications. 

Grey wolf optimisation algorithm mimics the 
social behaviour of natural grey wolves. Emphasis 
is given to their strict leadership, social dominant 
hierarchy and pack hunting. Major algorithmic 
functions involve mathematical models that 
simulate discrete steps namely prey tracking, prey 
pursuing/encircling and finally attacking the prey. In 
computational terms, the leader grey wolf is 
considered the fittest solution or best score. 
Thereby, the next two grey wolves in the hierarchy 
(2nd and 3rd) play the role of best scores after the 
"optimal" one (fittest score). The rest of the 
hypothetical wolf pack plays the role of the rest of 
the solutions that follow the first three in the 
hierarchy. Finally, the hunting process 
(optimisation) is guided by the first three "optimal" 
values for a given problem until the maximum 
number of algorithmic iterations has been reached. 
The rest of the algorithmic functions involve 
operations related to the algorithm's exploration 
and exploitation capabilities (global and local 
search) [26]. Search agents (grey wolves) update 
their positions as the optimisation process evolves 
having the first three solutions as a reference. 
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Moth-flame optimisation algorithm considers 
natural moths as its search agents. Consequently, a 
problem’s independent parameters are assumed 
to be the positions of moths in the search domain. 
Based on the problem's characteristics these 
positions are iteratively updated until the algorithm 
concludes the predetermined simulations. The best 
positions found by moths in each evaluation are 
represented by the flames. Flames can be assumed 
to be pins or flags dropped by moths while 
searching the solution domain [27]. Thus, each 
moth investigates a flag and updates it if a better 
solution than the current one has been found. This 
facilitates maintaining the best solution. A random 
population of moths is first created and then 
moths are moved towards the search domain. As 
the optimisation process evolves, the positions of 
moths are updated with regard to flames. The 
updating process referring to moths and flames 
facilitates the exploitation mechanism of the 
algorithm provided that a logarithmic spiral-type 
type of path will be programmed to maintain the 
major update mechanism. 

Dragonfly algorithm simulates natural 
dragonflies as predators that hunt all other smaller 
insects found in the natural environment. 
Dragonflies exhibit a unique swarming behaviour 
owing to the need for hunting and migration. The 
former constitutes static behaviour whereas the 
latter constitutes dynamic behaviour [28]. Static 
swarm of dragonflies is characterised by its small 
groups and restricted search regions (local search). 
In addition, small dragonfly swarms may abruptly 
alter their flying path towards haunting by 
performing back-and-forth trajectories. In the case 
of dynamic dragonfly swarms, all dragonflies are 
prompted to migrate towards a new long-distance 
direction. Despite this noticeable difference 
between the two swarm behaviours, the 
exploration and exploitation phases are quite 
similar. Static swarms of dragonflies fly over 
several regions by formulating sub-swarms. This 
simulates exploration. On the contrary, dynamic 
swarms fly towards one direction in bigger swarms 
which facilitates exploitation. By determining the 
algorithm-related parameters of the dragonfly 
algorithm, a variety of different exploitative-
explorative strategies can be programmed for 
problem-solving. 

Whale optimisation algorithm simulates the 
social behaviour and prey-attacking mechanism of 
humpback whales [29]. The prey-attacking 
mechanism of humpback whales involves two 

discrete operations: the random search or best 
search referring to the simulated algorithm's 
agents and the implementation of a spiral-type 
path for representing the "bubble-net" attaching 
mechanism by humpback whales. The "bubble-
net" attacking mechanism constitutes a foraging 
technique with two approaches: upward-spiral 
bubbled paths and double-loops. Further 
mathematical modelling and algorithmic 
development refer to the operators for "prey 
encircling", "bubble-net" attacking (exploitation 
phase) and prey searching (exploration phase). The 
development of the whale optimisation algorithm 
is based on vectors and closed intervals to 
represent search agents and current positions 
towards the higher scope of finding the global 
optimal solution. The algorithm switches between 
the exploration and exploitation phases by using a 
probability according to the problem's technical 
nature and particularities. Further aspects and 
development attributes concerning the detailed 
description of WOA can be found in [29]. 
 
4. Results and discussion 

The optimisation problem formulated in this 
paper has been based on the experimental design 
and corresponding results presented in [18] as 
regards the wear rate (mm3/m) in the case of 
A356/Al2O3 nanocomposites. Process parameters 
as well as their upper and lower bounds were 
determined the same as those presented in [18]. 
Thus reinforcement content RC (wt. %), sliding 
speed SS (m/s), normal load NL (N) and 
reinforcement size RS (nm), are the independent 
parameters whilst wear rate WR (mm3/m) is 
considered as the objective to be minimised. Based 
on the original full quadratic regression model 
presented, the objective function for the four 
algorithms tested is expressed by Equation (1). 

 minWR = 0.1873 – 0.761 · RC – 0.1204 · SS +  
+ 0.004052 · NL – 0.001101 · RS + 0.973 · RC2 +  
 + 0.030 · RC · SS – 0.00197 · RC · NL +  
 + 0.00064 · RC · RS – 0.001778 · SS · NL +  
 + 0.001744 · SS · RS – 0.000018 · NL · RS. (1) 

The bounds for independent parameters are 
presented as follows: 

 0.2 ≤ RC ≤ 0.5, (2) 

 0.25 ≤ SS ≤ 1.0, (3) 

 40 ≤ NL ≤ 100, (4) 

 30 ≤ RS ≤ 100. (5) 
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To provide a rigorous comparison among the four 
algorithms tested in this paper as well as the original 
results reported in [18], algorithm-related 
parameters were properly determined to match the 
original settings of algorithm-related parameters. 
The number of search agents in all algorithms was 
set to 10 and the maximum number of iterations 
was set to 100. It should be mentioned that the 
number of iterations is of high importance when it 
comes to algorithmic simulations since it affects the 
overall performance. The number of iterations 
establishes the algorithm's termination criterion and 
influences the ability to track beneficial (optimal) 
solution regions within a search space. As expected, 
an increased number of iterations will lead to an 
increased simulation time and thus computational 
cost. Consequently, the settings of algorithm-specific 
parameters (including the number of iterations) are 
of paramount importance for achieving a fast 
convergence rate (reduced number of iterations 
needed), increasing computational efficiency and 
ensuring the quality of proposed optimal solutions. 

All four algorithms tested, needed less than 10 
seconds to complete the simulations. Simulations 
were performed in an Intel® core™ i3-4160 CPU 
3.60 GHz 8GB RAM 64bit operating system. The 
algorithms were coded in MATLAB environment 
[26-29]. The resulting convergence curves obtained 
by GWO, MFO, DA and WOA algorithms are 
summoned and presented in Figure 1. 

All algorithms managed to arrive at the lowest 
fitness score equal to – 0.132 based on the original 
regression model presented in [18]. Note that the 
result of – 0.132 refers to the lowest fitness score 
based on the regression model that plays the role of 
objective function and not to wear rate WR 
(mm3/m). However, this result should correspond to 
positive values for independent process parameters 
that will deliver the lowest outcome for the wear 
rate. The best position for the lowest fitness score in 
terms of the independent process parameters 
corresponds to 0.44 wt. % for reinforcement 
content, 1.0 m/s for sliding speed, 100 N for normal 
load and 100 nm for reinforcement size. These are 
in agreement with the optimal values found in [18] 
by implementing genetic algorithm (GA) and 
particle-swarm optimisation (PSO). However, 
convergence curves differ in terms of the iteration 
number where the best fitness scores were 
obtained. GWO algorithm obtained its lowest 
fitness score in the 35th iteration, MFO in the 27th 
iteration, DA in the 52nd iteration and WOA in the 
13th iteration. By observing the convergence 

evolution of the algorithms tested, it is noticeable 
that all of them stacked at local regions from where 
they rapidly managed to escape. By examining 
Figure 1 it is observed that most local regions are 
found in MFO and WOA algorithms. Compared to 
GWO, MFO and WOA algorithms DA algorithm 
exhibited the largest fitness score in the early stage 
of the fitness function evaluation process. 

 

 

 

 
Figure 1. Convergence curves of algorithms for 
minimising wear rate (mm3/m) of A356/Al2O3 

nanocomposites 

GWO

MFO

DA

WOA
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5. Conclusion 

This paper examines the beneficial 
implementation of different swarm intelligence 
algorithms on minimising wear rate (mm3/m) of 
A356/Al2O3 nanocomposites as a typical 
optimisation problem related to the scientific field 
of tribology. The problem's optimisation domain 
was adopted by selected research available in the 
literature. The optimisation problem examined 
considers reinforcement content (wt. %), sliding 
speed (m/s), normal load (N) and reinforcement 
size (nm) as the independent variables whereas 
wear rate (mm3/m) was determined as the 
optimisation objective. 

The work has been motivated by the successful 
application of swarm intelligence metaheuristics in 
solving optimisation problems related to almost all 
aspects of engineering, manufacturing and 
industry. The results obtained by simulation 
experiments revealed that swarm intelligence 
algorithms not only manage to solve tribological 
optimisation problems but they achieve it by 
maintaining low computation time as well. 

According to the results obtained WOA 
algorithm was found to be the most prominent 
against GWO, MFO and DA algorithms in terms of 
its faster convergence to an earlier iteration 
number and global optimum result finally obtained 
for wear rate. Even though all algorithms showed 
encouraging results for minimising wear rate WOA 
appeared the most promising for tribology-related 
optimisation problems. However, this depends on 
the nature of objective function representation 
(i.e. regression model, neural network, customised 
programming environment for fitness score 
evaluations, etc). 

Future research intends to examine the 
potentials of swarm intelligence algorithms to 
other tribology-related optimisation problems with 
an emphasis on multi-objective optimisation. 
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